
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 6, 197-218 (1986) 

SIMULATION OF FORMING PROCESSES BY 
FEM WITH A BINGHAM FLUID MODEL 

M. BERCOVIER 

Department of Computer Science, The Hebrew University of Jerusalem, 91 904 Jerusalem, Israel 

M. ENGELMAN 

Department of Mathematics. I I T ,  Chicago, I / / . ,  U .S .A 

M. FORTIN 

Department of Mathematics, Universite Laval, Quebec, GI K 7 P 4 ,  Canada 

A N D  

N .  GOLDBERGER 

Department of Computer Science, The Hebrew University of Jerusalem, 91 904 Jerusalem, Israel 

SUMMARY 

We model the forming process as a fluid flow. A finite element program, FIDAP, which analyses 
flow problems, was used to calculate velocity and strain rates at points throughout the material during 
the deformation process. This allows predictions to be made on the shape and quality of the resulting part. 
The stress-strain relation we used models the plastic flow of metals (Bingham fluids). The FEM 
approximation of such a fluid is tested by comparing results for a simple analytical example. In forming 
processes provision must be made for friction between dye and workpiece, and the program was modified 
accordingly. Two classical ring forming simulations are compared to published results. 

KEY WORDS Bingham Fluids Forming Process Non-Newtonian Flows Finite Elements 

INTRODUCTION 

Modelling of forming processes by a Bingham fluid flow model using a finite element method 
has been introduced by Lee and Kobayashi’ and Zienkiewicz and Godbole,2 and numerous 
special purpose programs have been developed and t e ~ t e d . ~  More references on the subject can 
be found in Reference 4. Starting from Reference 2 most FEM methods based on such a 
formulation use a reduced constraint penalty method to handle the incompressibility constraint. 
This is usually done by implementing a reduced integration scheme in computing the volume 
deformation energy. This approach introduces numerical errors, and the consistent definition of 
a reduced constraint formulation can be found in Reference 5 or 6. Proper definitions of the 
penalty and reduced constraint method will avoid ‘locking’ situations as well as spurious pres- 
sures. Such an approach is the basis of the general fluid flow program FIDAP.’ Our aim 
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was to use this program (and extend it) for the simulation of forming processes. For evaluation 
purposes we wanted to be able to compute the error in our computations. First we give in detail 
the construction of a closed-form solution first published in Reference 8. Such a solution can 
be useful to anyone testing Bingham fluid flow codes. We then compare computed and analytical 
results. 

Since friction between dye and workpiece is a major design parameter in the forming process 
a friction element is introduced and implemented in the code. Using this friction element two 
simple classical examples of ring forming are given and compared to previously published results. 
Examples of actual dye forming simulations will appear elsewhere. Notations are given in 
Appendix I. 

PHYSICAL AND MATHEMATICAL MODEL 

Equations of motion and assumptions 

In the following, Cartesian tensor notation will be used with summation over repeated indices 
implied: ui is the velocity component in the x i  direction; Dij = + ( u ~ , ~  + u ~ , ~ )  is the strain rate tensor 
and oij are the components of the stress tensor: 

where P is the hydrostatic pressure-the spherical part of the stress tensor-and z i j  is the 
deviatoric stress tensor. 

It is assumed that thermal effects are negligible and the fluid is homogeneous, isotropic and 
incompressible. The following equations of motion are obtained. 

From conservation of momentum, 

Conservation of the moment of momentum implies the symmetry of the stress tensor, so 

The continuity equation from conservation of mass, for an incompressible fluid is 
0.. = 6.. 

EJ J l ‘  

ui,i  = 0. (3) 

Constitutive relations for Bingham and plastic flow 

fluid is defined as f01lows:~ 
The relationship between the strain rate tensor and the deviatoric stress tensor for a Bingham 

z i j  = (g/D;l’z + 2p)Dij, (4) 
where D,, = +DijDijis the second invariant of the strain rate tensor; p is the viscosity of the Bingham 
fluid and g is the yield limit (threshold of plasticity). This is defined for D,, # 0. 

To invert the relation zI1, the second invariant of the deviatoric stress tensor, is needed. 
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In this case (4) can be inverted. From (5 ) :  

The constitutive laws are therefore 

when z,, < g2 

I D i j  = 0, 
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(7) 

When a body is replaced under small loading forces it deforms but regains its original shape 
when the stresses are released. This is elastic deformation. When the loading forces are increased 
further, they can reach a point at which the body will not return to its original shape-this is 
plastic deformation, and occurs in metal forming processes. 

Von Mises suggested a criterion to determine when material would reach this stage. As long 
as the second invariant of stress (zII) remains less than a characteristic value for the material, 
k2,  deformation will be elastic. When zII reaches k2,  the material is at yield, and if no strain 
hardening occurs, zI1 will not exceed k2.  

In order to evaluate k in terms of yield stress in a uniaxial tensile test, zII can be written in 
terms of aij: 

TI1 =N% - 022)2 + ( 0 2 2  - 03312 + (033 - @Il) ’>  + d 2  + d 3  + dl 
= k 2 .  (9) 

In a uniaxial tensile test, cI1 = go, the tension at which yield is reached, and all other oij are 

Hence from (9), at yield 
equal to zero. 

T,, = k2 = 05 13, 
k = 00 /J3 .  

A simplified description 
by St. Venant: 

of the stress-strain relation for metals in the plastic range is given 

D i j  = I z i j ,  

where I is a function of strain rates. Hence 

D,, = 

Using the Von Mises yield criterion (10) 

D,, = A2 k 2 ,  

I = f D;,”/k, 
so that 
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A material obeying (13) is known as a Von Mises material and in effect satisfies the Bingham 
relation (8) with p = 0. Note that the material is rigidly perfectly plastic-there is no deform- 
ation in the elastic zone, and no deformation until (10) is reached. The strain is therefore only 
plastic. The hydrostatic pressure P is not determined and does not affect yielding and flow. 

Hence Von Mises flow can be modelled by a Bingham fluid with p = 0, and 

g = k = a0/ , /3 .  (14) 
In fact a small positive p was used, since solution existence, uniqueness and convergence results 
are valid for non-zero p. 

In the computer program FIDAP, zII and D,,, determining the Bingham relation, are defined 
as follows: 

= zijzij = 

D' - D..D..='D 11 - 1J 1J 2 I I  

where ' means 'as defined in FIDAP. Hence zi.i = (g/2D,l)1 'z)Dij .  
Therefore the g chosen for use with FIDAP was J ( 2 k )  so that (13) would be fulfilled. 

Friction 

In the forming process, there is frictional resistance encountered to the motion between the 
dye and material. It results in a shear stress on the surface of the material. Various models are 
used to describe this stress. The one which was applied here was that of a constant friction 
factor, m: 

z i j  = mo0/J3 .  (15) 

m is constant for given dye and material under constant surface and temperature conditions, 
and is considered independent of velocity. Since the maximum shear a material can stand from 
the Von Mises yield criterion (10) is 00/,/3,0 d m d 1. Further details of the implementation of 
friction are given in Appendix 11. 

Other approaches have been suggested, such as a non-linear variable stiffness element method; 
see Reference 10 and references therein. 

Abstract formulation of problem, variational representation 

Given a bounded domain Q of R2, rl u Tz its boundary, meas (r,) # 0, the solution is required 
to equations (2) and (3)  where the constitutive relations are given by ( 1 )  and (8), and boundary 
conditions are 

ui=O on rl.  (16) 
This represents fluid flow in the interior of R and will be called problem PI .  
Restricting discussion to the two-dimensional problem, the following space is used (see, for 

instance, Reference 9 for definitions): 

I/ = { U E ( H ' ) ( Q ) ~ ) ,  div u = 0; ullr, = 0) .  
The following forms are defined for vector fields u, u, w on 0: 

Di j (u )Di j (u )  : V x I/ + R, 
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Given fcLZ(O, T ,  V ) ,  it can be showng that the solution to problem P1 is also the solution 
to the following variational problem: 

where 

g(j ’(u), u) = ~ ~ D , , ( u ) - ” ’ D , ( u ) D i j ( u ) d x .  

It is not always easy to work in divergence-free spaces, and therefore it is useful to consider 

The following spaces are defined: 
an alternative formulation of problem P1. 

X = ( H m ) 2 ,  
M = L2(Q)/R 

and the bilinear form b(. ,  . ):X x M + R 

b(u, q )  = - (4, divu). (22)  
Discussion will be limited for simplicity to the stationary problem, where the &/at term is 

(i) a (., .) is elliptic on I/, i.e. there exists a constant a >  0 such that 

omitted. Then under the following conditions. 

a(u, 0)  2 a 1 )  u I /  ;, V U €  v. 
(ii) The Brezzi-Babuska hypothesis holds, i.e. 

Problem P1 is equivalent to 
Find (u, p ) e X  x M such that 

(Problem P2). 
In effect, p here is a Lagrange multiplier associated with the constraint b(u, q )  = 0. 
For numerical solution of problem P2, there are various difficulties-the incompressibility 

constraint, the non-linear term c(u, u, w )  and the fact that the functionalj(u) is not differentiable. 
To help overcome these difficulties a perturbed problem is introduced, and it is ‘linearized’ to 

(Problem P3). 
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p ,  can be eliminated, so that the perturbation can be seen as a penalty function on the original 

Find U,EX such that 
problem, to give 

(Problem P4). 
In Reference 11 it was shown that under the following condition: 

l .c [ . f ]*  < 6 < 1, 

c(u, u, w )  < ca(u, u)1/2a(u ,  u)1/2u(w,  w)"2, 

where c and [ f ] ,  are given by 

problem P3 has a unique solution and 

II u - u, II x 6 C ( f >  Q)&. (30) 
In numerical work, to prevent the problem of D,, = 0, the following formulation is used," 

which is derived from (27), and for which the same error estimate holds: 

a(.,.) is Xelliptic, since 

u(u, u)  = (grad u, grad u). (32) 

Hence a(u, u)  = I U ~ : , ~ ,  which can be a norm for X ,  and hence (23) is fulfilled. 
Condition (24) is fulfilled by a standard re~u1t . l~  In numerical approximations it  is necessary 

Another result which can be used for numerical formulations is9 
For (u, p )  a solution of problem P2, there exist mijEK such that 

to ensure that it still holds. 

where (m, D ( u ) )  is defined by 

(m, D ( u ) )  = mijDij(u) dx. b 
NUMERICAL PROCEDURES 

Finite elements 

Nine node isoparametric quadrilaterals were used with biquadratic interpolation functions 
for velocity. Discontinuous pressure approximations were used for most of the problems, to 
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enable the penalty function approach to be used, with linear interpolation for the pressure. The 
three pressure degrees of freedom are then the coefficients of the linear polynomial approximating 
the pressure on the element. The basic functions were chosen to be in the global space { l , x , y } .  

It can be shown* that for the approximate solution ( U h , p h )  to problem P2 in the discrete 
spaces x h ,  M h  defined by the finite element approximations above, the following error estimate 
holds, where (u,p) is the exact solution to problem P2: 

There exist constants cl, c 2 ,  c3 independent of h such that 

11 u - u h  1 1 '  < c1 inf I( oh- , ,  11: + c 2 g  inf ( 1  u h  - u I I x  + c3  inf Ip - q h I 2  (37) 
V h E X h  C.hEXh 9 h e M h  

VhVh = 0 VhVh=O 

(the operator V h  is defined in the next section). 

Penalty formulation 

For simplicity, the stationary equations of Stokes flow will be considered in the following. 
The discretized approximation of the variational problem in finite element spaces xh, M h  is 

Find ( u h ,  P h ) E X h  X M h  such that 

where Vh is the linear operator defined by 

The penalty formulation of the problem is given by 
Find ( U i , & ) E X h  x M h  such that 

O h )  - ( p i ?  vhuh)  = (f 9 u h h  v u h E X h ,  q h E M h ,  

( v h u i , q h ) =  - & ( P ; ? q h ) .  

By choosing q h  so that q h  = V h U h , p i  can be eliminated from (41) to give 
Find U h E X h  such that 

The pressure is then recovered by 

(44) 
1 p i  = - -vug. 
& 

Use of this weaker form of the incompressibility constraint is necessary in order to ensure 
that the Brezzi-Babuska hypothesis (24) holds. 

Here we use the consistent reduced ~ons t r a in t .~  The corresponding choice of the penalty 
parameter E is independent of the problem but for the dimension of the Bingham coefficient g. 
Our choice was to set E of order g x 

Solution algorithm and method 

The following algorithm is used" to solve problem P4 in finite element approximation 
space X h ,  where uo is an initial guess, u" the nth iterate, then u"+l is computed from (dropping 
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The iteration can be modified by defining the new unt l  as 

(46) 
un+ 1* - 

- MU" +(1  - M)U"+', 0 < M < 1, 

where M is a relaxation or acceleration factor. 

Convergence 

vector ui (at iteration i) and the residual vector R(ui). One criterion used is that 
FIDAP uses two criteria to terminate iteration. Two solution variables available are the solution 

< E ~ ,  where Vu' = ui - ui-'. II VU'II 
II ui II 

This criterion is not always sufficient, and therefore a second criterion used is that 

(47) 

Default values for E, and E~ are 0.01. 
The condition for rigid flow is the one given in Reference 12. 

Di" < ch2; h = element radius, (49) 
in rigid regions of flow. 

In many cases, particularly where a high friction factor was used, the solution did not approach 
convergence at all, and the criteria for convergence increased rather than decreased, or remained 
stationary. It was found that altering the iteration acceleration factor (a) (see preceding section) 
usually helped convergence eventually, but often many iterations were required, as the criteria 
increased considerably before finally decreasing to sufficiently low levels. 

Another technique used to help achieve convergence was the following. FIDAP allows a 
number of options for determination of the initial velocity field, for the first iteration of the 
iterative procedure. The velocities at  each node can be specified. For cases of high friction, the 
program was first run on the mesh, with infinite friction simulated, by fixing the velocity boundary 
codes to eliminate the tangential degrees of freedom totally for surface nodes, so that no tangential 
motion at all was allowed at the dye-workpiece interface. This run converged without problem. 
The results obtained from this run were then used as the initial velocity field for a regular run, 
in which the surface nodes were free to move tangentially, too. 

AN ANALYTICALLY SOLUBLE EXAMPLE O F  BINGHAM FLOW 

Closed form solution of problem 

In Reference 8 we gave a closed form solution. Since Reference 8 is not easily accessible and 
contains typographical errors, we recall its construction here. We consider the flow of a Bingham 
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fluid contained within two cylinders, with the outer cylinder rotating with constant angular 
speed o. Inner and outer radii are a and b, respectively. 

The solution is given by u = (u,, u,) where u, is the radial and u, is the tangential component 
of velocity. Here 

u, = 0, V r,  0 ; u, = u&). (50) 

The equations of motion in cylindrical co-ordinates are given by 

Stress and strain are related by the Bingham relation given by (1) and (4) .  

From (52)  

A 
a,, = z,, = - 

r2'  

where A is a constant to be computed. 
From (50) and the stress-strain relations 

D,, = Do, = 0, 

z,, = To, = 0. 

In cylindrical co-ordinates 

D,, = i r z (  dr 3). r 

Recalling that D,, = D i j D i j ,  tll = t i j z i j ( 5 4 )  and (53)  give 

From (8) 

With (53 and 56) 

TI[ = z,,J2 = 2. A J 2  
r 

Hence, using (55)  

rd U ,  1 A 
a,[ ;] = ,[ 7 -3 

(53)  

(54)  

(55)  

(56)  

(57)  
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Integrating from inner radius u to r: 

In (rla). Y 

There are two possible cases. 

Case I. Fully viscous flow in which tll > g 2  for all r. If ue/r = o on the outer radius, r = b, 
(60) gives 

Hence, 

Substituting in (60) 

as long as T:,’~ 3 g, i.e. 

A,/2/b2 2 y. 

Case 11. If AJ2/r2 is not greater than g for all r, there exists an y o ,  a 6 ro 6 b such that 

A,/2/rg = g .  (65) 

Boundary conditions are now given by 

udro) = roo,  (66) 

so substituting in (60) 

so that 
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and 

9 + cro/4 

1 1  
u,(r) = - 

P 

u,(r) = rw, for ro < r <  b. 

ro is computed from (65) 
r 

2 4 2  pw+--In(r,/a) = g r i  --- 1 J2 ] [a" ri]' 

2;2[$ 11. 
9 pw + -In (ro/a) = ~ - - 
J2 

(69) 

(70) 

Given g, ro can be calculated numerically by successive substitutions using, from (70), (where 
r: is the nth iterate), 

Alternatively, a desired ro can be chosen and the corresponding g calculated from the following 
(derived from (70)): 

2J2PO 
9 =  
- - 2 In (ro/u) - 1 
a' 

Figure 1 .  'Streamline' mesh 
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Figure 2. 'General' mesh 

Numerical experiments 

Numerous numerical computations were given in Reference 8; there the mesh was streamline 
orientated (cf. Figure 1). Here we shall consider only one case, mainly to illustrate that there is 
no loss of accuracy when a 'general' mesh is used (Figure 2). 

For numerical computations the following values were set: 

a = 0.5, b = 1.0, o = p = 1.0, g = 7.1010, ro = 0.7375. 

These values yield a free boundary which does not fall on a node. 

Results 

The numerical results on both mesh discretizations display good agreement with the theoretical 
solutions. 

Tables I and I1 give for the regular discretization and the non-streamline discretization the 
radius vector r, and corresponding velocity and the discretization found numerically and 
analytically. 

For the regular division velocities were symmetrical, as can be seen from Figure 3. 
In both cases, the accuracy is acceptable for the number of elements used and it can be seen 

that the error is larger next to the boundary, where the solution is not C'. The error in the 

Table I. Velocity results, regular division 

Radius, r 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0 

Numerical velocity, V,, 0.264 0459 0.595 0.681 0.741 0.794 0.844 0.894 0.948 1.00 
Analytic velocity, V, 0.258 0452 0.593 0690 0.750 0800 0.850 0.900 0.950 1.00 
Error, V,, - V, 0.006 0007 0002 -0009 -0.009 -0.006 -0.006 -0.006 0.002 
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Figure 3. ‘Streamline’ mesh: Bingham fluid, velocity vector plot 

Figure 4. ‘General’ mesh: Bingham fluid-non-streamline division; velocity vector plot 
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Table 111. 

Node Radius 
number x co-ordinate y co-ordinate r Velocity 

( a )  r 'v 0.75 
54 0.729 0.177 0.750 0.739 
55 0.694 0285 0.750 0.739 
58 0.750 0.000 0.750 0.740 
59 0.748 0.054 0.750 0.740 
148 0.347 0667 0.752 0.740 

( b )  r = 0.587-0.600 (note steady increase of velocities with radius) 
71 0.479 - 0.339 0.587 0.409 
50 0.480 0.341 0.589 0.4 16 
74 0.4 1 2 0.426 0.592 0.429 
29 0.536 0.270 0.600 0.456 

non-streamline discretization is larger in general than with the regular discretization, but not 
excessively so. The error in the right zone is due to the numerical computation of 

The maximum error is 2 per cent. 
For the non-streamline discretization, the relative symmetry of velocity results can be seen 

from the velocity vector plot (Figure 4), and from Table 111, which gives two examples of results 
from different nodes with approximately the same radius vector r. The results can be seen to 
be very similar. 

FORMING PROCESS SIMULATIONS 

Ring compression example 1 

Problem definition. Oh, Lahoti and Altan3 describe the use of a finite element program, ALPID, 
to simulate compression of a short ring specimen. This example was tried with FIDAP to 
compare results and see if they were similar. 

The material used for calculation was Ti-6242-0.1 Si at  1750" F. Since the experimental 
stress-strain rate relation could not be obtained, it was approximated from information in 
Reference 3 for lower temperatures, that yield strength is 450MPa. This is equivalent to 
450 x 1O3kgmrn-'s-', for the units used (kg, mm) and gives g for use in FIDAP of 360 x lo3. 
Some variations of this g were tried (see below). 

The initial dimensions of the ring were 
height = 25.4 mm (1 in.), 
internal radius = 38.1 mm (1.5 in.), 
outer radius = 76.2 mm (3 in.); 

dye velocity was 25*4mm/s (1 in+) and the step size used was 4 per cent of the undeformed 
workpiece height. A mesh of 4 elements was used. 

A series of instructions was given which ran the program, recorded the velocity vectors, 
changed the mesh according to the velocities calculated and drew the new mesh, and continued 
in this way for several stages. 
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Since the value of g was high, it was important to use a high penalty parameter, E, which was 
taken as lo-’. 

Results for m = 0.60. Convergence was only achieved by using an initial velocity field obtained 
from a simulation of infinite friction. Using this, with an iteration acceleration factor of 0.85 (i.e. 
changing the velocities by a relatively small amount each iteration), and a threshold velocity to 
reduce stress of 5 mm/s, convergence to a solution was obtained. 

The solution compared with that of Oh, Lahoti and Altan, showing the neutral radius inside 
the inner diameter from the beginning, and convex inner and outer surfaces. 

Figures 5 (a), (b) and (c) show velocity vectors initially, after 20 per cent and after 40 per cent 
deformation. Figures 6 (a), (b) and (c) show the mesh initially and after 20 per cent and 40 per 
cent deformation. It can be seen to be very similar to Oh. Lahoti and Altan’s results in Figure 
5 of Reference 3. 

(a) Initial Compression 

\ c 

(b) After 20% Reduction 

(c) After 40% Reduction 

Figure 5. Ring compression: velocity vector 
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Radius 

(a) Initial shape 

(b) After 20% Reduction 

Y \ I 
I I I I I I I I I I I I I  I 

0.00 40.00 50.00 60.00 70.00 00.00 90.00 100.00 
Radius 

(c) After 40% Reduction 

Figure 6. Ring compression: deformed shape 

Ring compression example 2 

Problem definition. Nagpai, Lahoti, and AltanI4 describe a deformation pattern used in an 
upper bound analysis of ring compression to predict velocities and strain in the metal flow. 
Information on internal diameters of upset forged rings can be used to indicate frictional 
conditions at the dye-ring interface. The examples given there were tried with FIDAP and 
results compared with their theoretical and experimental results. 

Material used was Aluminium 1100-F upset at room temperature and 800" F (427" C).  Yield 
strength was taken at room temperature as for 0 Temper A1 1100 as 34 MPa (13) equivalent 
to 34,000kgmm-'s-', giving g for use in FIDAP as 28,000. For  the higher temperature, yield 
strength is about 11 MPa" giving g for FIDAP of about 8000. 
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Dimensions of the rings were: 
heights = 36 mm and 18 mm, 
outer diameter (OD) = 54 mm, 
internal diameter (ID) = 27 mm; 

dye velocity for a press wih 254mm stroke at 90 strokes/min was 381 mm/s. 

on rings of half the given height, with half the dye velocity, 191 mm/s. 
Assuming symmetrical deformation, as was assumed in Reference 14, the analysis was performed 

A mesh of 15 elements was used for the thin specimen and 30 elements for the thicker specimen. 
The friction factor, m, was taken from Reference 14 to be 0.52 for cold conditions and 1.0 for 

hot forming. Step size was 5.5 per cent of the thin ring and 2.3 per cent of the thick ring. The 
pressure penalty parameter was taken as lop8, since g was high. This analysis was done 
isothermally, and did not include heat effects. In principle, FIDAP could be used for a 
non-isothermal analysis. 

Results for ring 6:3:4(00:10:height). Nagpai, Lahoti and AltanI4 found experimentally that 
the thicker rings buckled under both hot and cold conditions, which could not be accounted 
for by upper bound type analysis.16 

When FIDAP was used on this example, it clearly gave the buckling which was found 
experimentally. Figures 7 (a) and (b) show the mesh (for half the ring) at about 19.3 per cent 
reduction in height for cold and hot conditions. An iteration acceleration factor of 0.45 was used 
for the hot conditions, and 0 1  5 for the cold conditions, and threshold velocity for stress reduction 
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Figure 7. Mesh, buckled ring after 19.3 per cent height reduction 
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1 

Figure 8. Thin specimen: cold forging; 29.5 per cent reduction 

of 10mm/s, but convergence was still not complete. Nevertheless, the result can be seen to 
compare well with the experimental result of Nagpai, Lahoti, and Altan.14 The outer surface 
would be more rounded if compression were continued further but this would require 
renumbering and reconstructing of the mesh to allow for folding of free surfaces. (This will be 
the subject of another work). 

Note. In all our examples we supposed the dye velocity constant. This was used to update 
the geometry. Thus if the dye velocity was Vmm/s and the desired reduction per ‘time step’ was 
x per cent of initial height H, the current time increment would be ( H / V )  x per cent. This was 
used to compute the new geometry by moving all nodes from their current position by u A t  
where u is the flow ‘velocity’. 

CONCLUSIONS 

In manufacture of parts for machinery, motors, vehicles and ajrcraft, a forming process is often 
used, in which hot metal is compressed between dies under high pressure. I t  is important to 
investigate details of what happens during the process, in order to optimize the conditions of 
pressure, shape of dies, and temperature for strongest, uniformly dense parts, of desired shape, 
and without faults, undue strains, or weak points. The FEM formulation of Bingham fluid flows 
does offer the requested model for the qualitative simulation of such processes. Use of standard 
programs such as FIDAP is possible provided one includes friction elements. For real-life die 
shapes one would have to include an automatic remeshing p r~cedure . ’~  Convergence of the 
quasilinear methods used here can be greatly improved by using Lagrange multipliers for the 
rigid zone constraints as similar to the methods given in Reference 18. 

APPENDIX I-NOTATION 

u,-velocity component in the x i  direction 
uij  = 8ui/8xi-partial derivative of ui with respect to xj  
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Vu = div u = 

Dij-strain rate tensor components 
oij-stress tensor components 
rij-deviatoric stress tensor components 
D,,-second invariant of strain rate tensor 
TI,-second invariant of deviatoric stress tensor 
fi-body force component per unit volume 
p-viscosity 
p-density 
g-yield limit (threshold of plasticity) for Bingham fluid 
o,-yield stress in uniaxial tensile test 
k-Von Mises criterion 
R-Open domain in R" 
r-boundary of R 
m-friction factor 
&-penalty parameter 
Y, 8-cylindrical co-ordinates 

ui,i  
1 

APPENDIX 11-FRICTION ELEMENT 

Friction, as defined by the constant friction factor model, is in effect a tangential boundary stress, 
of value ma,/ J 3  directed against the motion of the boundary point, where m is the friction factor. 

As with other applied surface stresses, it is necessary to calculate 

j r + < d r = F i  (73) 

where 4 is the velocity basis function, r is the boundary line, < is the applied stress vector in the x i  
direction and F i  is the resultant force vector. 

FIDAP defines a boundary velocity element to be used when it is desired to specify tangential or 
normal components of velocity or applied stresses on a boundary. The program will then 
premultiply by an orthogonal rotational matrix R and post-multiply by its transpose RT, the 
stiffness matrix of any elements containing a node with the specified normal or tangential 
boundary condition (say node i), and premultiply by R the element force vector where 

j k 

0 

0 

. o  

. o  
j ,  k = position of x and y degrees of freedom in element stiffness matrix, 
n,, n, = components of boundary normal at node i, 
t,, t ,  = components of boundary tangent at node i. 
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This, in effect, transforms the x and y momentum equations for node i to t and n, tangential 
and normal degrees of freedom. Constrained values and stresses are treated accordingly. Since 

u, = n,u, + n,u,, 
u, = t , U ,  + t,u,, t = (-  n,, n,), (74) 

where u,, u, are the normal and tangential components of velocity, and u,, u, are the x and y 
components of velocity. 

u, and u, can be recovered from (u,, u,) by 

u, = nxu, - n,u,, 
u, = n,u, + n,u,. (75) 

Since friction is a tangential stress whose direction depends on tangential velocity, it was 

Where friction is used, the program then forms the right hand side vector from 
implemented into the boundary velocity elements. 

00/J3 is given by g/ J2, where g is the yield stress for Bingham flow (see discussion following 

The line integral is evaluated using 
equation (14)). 

2 l / 2  

dT=[(g)’+(;) ] ds, (77) 

where s is a parameter along the boundary, taking values from - 1 to 1. 
x and y are given by 

x = NTz, Y = NTy, (78) 
where .?, y are column vectors of nodal co-ordinates; 

N = [  +S(S l - s ’ ]  - 1) 

+s(s + 1)  

are the shape functions for an element boundary. 
Hence 

Fi= ~ ~ l ~ [ [ ~ ~ ] 2 + [ N T I ) ]  2 ] 112 ds. 

as - 
(79) 

This integration is performed numerically by Gaussian quadrature using the value of the shape 
functions and derivatives given by the boundary velocity element. 

When there were problems in obtaining convergent solutions for cases of high friction, a 
further development was made in the friction element to help convergence. Oh, Lahoti and Altan 
mention in their paper3 that a smooth transition in the stress change near the neutral point was 
used. The formulation described so far leads to a very sudden change. Hence an additional 
parameter was introduced. Let us call that threshold parameter E ,  and uT the tangential velocity 
then we multiply (79) by (UTI/& if luTl < E.  
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